Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 15: 1340465, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38510698

RESUMO

Context: Over 1.9 billion adult people have overweight or obesity. Considered as a chronic disease itself, obesity is associated with several comorbidities. Chronic pain affects approximately 60 million people and its connection with obesity has been displayed in several studies. However, controversial results showing both lower and higher pain thresholds in subjects with obesity compared to individuals with normal weight and the different parameters used to define such association (e.g., pain severity, frequency or duration) make it hard to draw straight forward conclusions in the matter. The objective of this article is to examine the relationship between overweight and obesity (classified with BMI as recommended by WHO) and self-perceived pain intensity in adults. Methods: A literature search was conducted following PRISMA guidelines using the databases CINAHL, Cochrane Library, EMBASE, PEDro, PubMed, Scopus and Web of Science to identify original studies that provide BMI values and their associated pain intensity assessed by self-report scales. Self-report pain scores were normalized and pooled within meta-analyses. The Cochrane's Q test and I2 index were used to clarify the amount of heterogeneity; meta-regression was performed to explore the relationship between each outcome and the risk of bias. Results: Of 2194 studies, 31 eligible studies were identified and appraised, 22 of which provided data for a quantitative analysis. The results herein suggested that adults with excess weight (BMI ≥ 25.0) or obesity (BMI ≥ 30.0) but not with overweight (pre-obesity) alone (BMI 25.0-29.9), are more likely to report greater intensities of pain than individuals of normal weight (BMI 18.5-24.9). Subgroup analyses regarding the pathology of the patients showed no statistically significant differences between groups. Also, influence of age in the effect size, evaluated by meta-regression, was only observed in one of the four analyses. Furthermore, the robustness of the findings was supported by two different sensitivity analyses. Conclusion: Subjects with obesity and excess weight, but not overweight, reported greater pain intensities than individuals with normal weight. This finding encourages treatment of obesity as a component of pain management. More research is required to better understand the mechanisms of these differences and the clinical utility of the findings. Systematic Review Registration: https://doi.org/10.17605/OSF.IO/RF2G3, identifier OSF.IO/RF2G3.


Assuntos
Obesidade , Sobrepeso , Adulto , Humanos , Sobrepeso/complicações , Sobrepeso/terapia , Medição da Dor , Obesidade/complicações , Aumento de Peso , Dor
2.
Front Endocrinol (Lausanne) ; 15: 1346317, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544694

RESUMO

Introduction: Obesity is a chronic condition associated with low-grade inflammation mainly due to immune cell infiltration of white adipose tissue (WAT). WAT is distributed into two main depots: subcutaneous WAT (sWAT) and visceral WAT (vWAT), each with different biochemical features and metabolic roles. Proinflammatory cytokines including interleukin (IL)-16 are secreted by both adipocytes and infiltrated immune cells to upregulate inflammation. IL-16 has been widely studied in the peripheral proinflammatory immune response; however, little is known about its role in adipocytes in the context of obesity. Aim & Methods: We aimed to study the levels of IL-16 in WAT derived from sWAT and vWAT depots of humans with obesity and the role of this cytokine in palmitate-exposed 3T3-L1 adipocytes. Results: The results demonstrated that IL-16 expression was higher in vWAT compared with sWAT in individuals with obesity. In addition, IL-16 serum levels were higher in patients with obesity compared with normal-weight individuals, increased at 6 months after bariatric surgery, and at 12 months after surgery decreased to levels similar to before the intervention. Our in vitro models showed that IL-16 could modulate markers of adipogenesis (Pref1), lipid metabolism (Plin1, Cd36, and Glut4), fibrosis (Hif1a, Col4a, Col6a, and Vegf), and inflammatory signaling (IL6) during adipogenesis and in mature adipocytes. In addition, lipid accumulation and glycerol release assays suggested lipolysis alteration. Discussion: Our results suggest a potential role of IL-16 in adipogenesis, lipid and glucose homeostasis, fibrosis, and inflammation in an obesity context.


Assuntos
Adipogenia , Interleucina-16 , Humanos , Fibrose , Inflamação/metabolismo , Lipídeos , Obesidade/metabolismo
3.
Eur J Endocrinol ; 190(3): 201-210, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38375549

RESUMO

OBJECTIVE: T lymphocytes from visceral and subcutaneous white adipose tissues (vWAT and sWAT, respectively) can have opposing roles in the systemic metabolic changes associated with obesity. However, few studies have focused on this subject. Claudin-1 (CLDN1) is a protein involved canonically in tight junctions and tissue paracellular permeability. We evaluated T-lymphocyte gene expression in vWAT and sWAT and in the whole adipose depots in human samples. METHODS: A Clariom D-based transcriptomic analysis was performed on T lymphocytes magnetically separated from vWAT and sWAT from patients with obesity (Cohort 1; N = 11). Expression of candidate genes resulting from that analysis was determined in whole WAT from individuals with and without obesity (Cohort 2; patients with obesity: N = 13; patients without obesity: N = 14). RESULTS: We observed transcriptional differences between T lymphocytes from sWAT compared with vWAT. Specifically, CLDN1 expression was found to be dramatically induced in vWAT T cells relative to those isolated from sWAT in patients with obesity. CLDN1 was also induced in obesity in vWAT and its expression correlates with genes involved in inflammation, fibrosis, and adipogenesis. CONCLUSION: These results suggest that CLDN1 is a novel marker induced in obesity and differentially expressed in T lymphocytes infiltrated in human vWAT as compared with sWAT. This protein may have a crucial role in the crosstalk between T lymphocytes and other adipose tissue cells and may contribute to inflammation, fibrosis, and alter homeostasis and promote metabolic disease in obesity.


Assuntos
Tecido Adiposo Branco , Claudina-1 , Obesidade , Humanos , Tecido Adiposo Branco/metabolismo , Diferenciação Celular , Claudina-1/metabolismo , Fibrose , Inflamação/metabolismo , Obesidade/complicações , Linfócitos T/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(3): e2300096121, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38194457

RESUMO

The prevalence of overweight and obesity continues to rise in the population worldwide. Because it is an important predisposing factor for cancer, cardiovascular diseases, diabetes mellitus, and COVID-19, obesity reduces life expectancy. Adipose tissue (AT), the main fat storage organ with endocrine capacity, plays fundamental roles in systemic metabolism and obesity-related diseases. Dysfunctional AT can induce excess or reduced body fat (lipodystrophy). Dido1 is a marker gene for stemness; gene-targeting experiments compromised several functions ranging from cell division to embryonic stem cell differentiation, both in vivo and in vitro. We report that mutant mice lacking the DIDO N terminus show a lean phenotype. This consists of reduced AT and hypolipidemia, even when mice are fed a high-nutrient diet. DIDO mutation caused hypothermia due to lipoatrophy of white adipose tissue (WAT) and dermal fat thinning. Deep sequencing of the epididymal white fat (Epi WAT) transcriptome supported Dido1 control of the cellular lipid metabolic process. We found that, by controlling the expression of transcription factors such as C/EBPα or PPARγ, Dido1 is necessary for adipocyte differentiation, and that restoring their expression reestablished adipogenesis capacity in Dido1 mutants. Our model differs from other lipodystrophic mice and could constitute a new system for the development of therapeutic intervention in obesity.


Assuntos
Adipogenia , Lipodistrofia , Animais , Camundongos , Adipogenia/genética , Diferenciação Celular , Dieta , Obesidade/genética , Sobrepeso
6.
Aging Cell ; 22(11): e13919, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37403257

RESUMO

Caloric restriction is a non-pharmacological intervention known to ameliorate the metabolic defects associated with aging, including insulin resistance. The levels of miRNA expression may represent a predictive tool for aging-related alterations. In order to investigate the role of miRNAs underlying insulin resistance in adipose tissue during the early stages of aging, 3- and 12-month-old male animals fed ad libitum, and 12-month-old male animals fed with a 20% caloric restricted diet were used. In this work we demonstrate that specific miRNAs may contribute to the impaired insulin-stimulated glucose metabolism specifically in the subcutaneous white adipose tissue, through the regulation of target genes implicated in the insulin signaling cascade. Moreover, the expression of these miRNAs is modified by caloric restriction in middle-aged animals, in accordance with the improvement of the metabolic state. Overall, our work demonstrates that alterations in posttranscriptional gene expression because of miRNAs dysregulation might represent an endogenous mechanism by which insulin response in the subcutaneous fat depot is already affected at middle age. Importantly, caloric restriction could prevent this modulation, demonstrating that certain miRNAs could constitute potential biomarkers of age-related metabolic alterations.


Assuntos
Resistência à Insulina , MicroRNAs , Animais , Masculino , Insulina/metabolismo , Restrição Calórica , Resistência à Insulina/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Tecido Adiposo Branco/metabolismo , Tecido Adiposo/metabolismo , Envelhecimento/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-37156296

RESUMO

Podocytes are specialized epithelial cells that maintain the glomerular filtration barrier. These cells are susceptible to lipotoxicity in the obese state and irreversibly lost during kidney disease leading to proteinuria and renal injury. PPARγ is a nuclear receptor whose activation can be renoprotective. This study examined the role of PPARγ in the lipotoxic podocyte using a PPARγ knockout (PPARγKO) cell line and since the activation of PPARγ by Thiazolidinediones (TZD) is limited by their side effects, it explored other alternative therapies to prevent podocyte lipotoxic damage. Wild-type and PPARγKO podocytes were exposed to the fatty acid palmitic acid (PA) and treated with the TZD (Pioglitazone) and/or the Retinoid X receptor (RXR) agonist Bexarotene (BX). It revealed that podocyte PPARγ is essential for podocyte function. PPARγ deletion reduced key podocyte proteins including podocin and nephrin while increasing basal levels of oxidative and ER stress causing apoptosis and cell death. A combination therapy of low-dose TZD and BX activated both the PPARγ and RXR receptors reducing PA-induced podocyte damage. This study confirms the crucial role of PPARγ in podocyte biology and that their activation in combination therapy of TZD and BX may be beneficial in the treatment of obesity-related kidney disease.


Assuntos
Nefropatias , Podócitos , Tiazolidinedionas , Humanos , PPAR gama/metabolismo , Pioglitazona/farmacologia , Tiazolidinedionas/metabolismo , Tiazolidinedionas/farmacologia , Tiazolidinedionas/uso terapêutico , Nefropatias/tratamento farmacológico , Bexaroteno/farmacologia
8.
Int J Mol Sci ; 24(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36768986

RESUMO

The aim of this work was to investigate the effect of the whole-body deletion of p27 on the activity of brown adipose tissue and the susceptibility to develop obesity and glucose homeostasis disturbances in mice, especially when subjected to a high fat diet. p27 knockout (p27-/-) and wild type (WT) mice were fed a normal chow diet or a high fat diet (HFD) for 10-weeks. Body weight and composition were assessed. Insulin and glucose tolerance tests and indirect calorimetry assays were performed. Histological analysis of interscapular BAT (iBAT) was carried out, and expression of key genes/proteins involved in BAT function were characterized by qPCR and Western blot. iBAT activity was estimated by 18F-fluorodeoxyglucose (18FDG) uptake with microPET. p27-/- mice were more prone to develop obesity and insulin resistance, exhibiting increased size of all fat depots. p27-/- mice displayed a higher respiratory exchange ratio. iBAT presented larger adipocytes in p27-/- HFD mice, accompanied by downregulation of both Glut1 and uncoupling protein 1 (UCP1) in parallel with defective insulin signalling. Moreover, p27-/- HFD mice exhibited impaired response to cold exposure, characterized by a reduced iBAT 18FDG uptake and difficulty to maintain body temperature when exposed to cold compared to WT HFD mice, suggesting reduced thermogenic capacity. These data suggest that p27 could play a role in BAT activation and in the susceptibility to develop obesity and insulin resistance.


Assuntos
Tecido Adiposo Marrom , Resistência à Insulina , Animais , Camundongos , Tecido Adiposo Marrom/metabolismo , Dieta Hiperlipídica/efeitos adversos , Fluordesoxiglucose F18/metabolismo , Insulina/metabolismo , Resistência à Insulina/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Termogênese
9.
Hepatology ; 77(3): 874-887, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35592906

RESUMO

Obesity features excessive fat accumulation in several body tissues and induces a state of chronic low-grade inflammation that contributes to the development of diabetes, steatosis, and insulin resistance. Recent research has shown that this chronic inflammation is crucially dependent on p38 pathway activity in macrophages, suggesting p38 inhibition as a possible treatment for obesity comorbidities. Nevertheless, we report here that lack of p38 activation in myeloid cells worsens high-fat diet-induced obesity, diabetes, and steatosis. Deficient p38 activation increases macrophage IL-12 production, leading to inhibition of hepatic FGF21 and reduction of thermogenesis in the brown fat. The implication of FGF21 in the phenotype was confirmed by its specific deletion in hepatocytes. We also found that IL-12 correlates with liver damage in human biopsies, indicating the translational potential of our results. Our findings suggest that myeloid p38 has a dual role in inflammation and that drugs targeting IL-12 might improve the homeostatic regulation of energy balance in response to metabolic stress.


Assuntos
Fígado Gorduroso , Resistência à Insulina , Humanos , Animais , Camundongos , Interleucina-12 , Obesidade/metabolismo , Fígado Gorduroso/metabolismo , Tecido Adiposo Marrom/metabolismo , Metabolismo Energético , Inflamação/metabolismo , Dieta Hiperlipídica , Macrófagos/metabolismo , Termogênese , Camundongos Endogâmicos C57BL
10.
Nutrients ; 14(19)2022 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-36235590

RESUMO

Obesity is recognized as an independent risk factor for the development of kidney disease, which has led to the designation of obesity-related glomerulopathy (ORG). Common renal features observed in this condition include glomerular hypertrophy, glomerulosclerosis, haemodynamic changes and glomerular filtration barrier defects. Additionally, and although less studied, obesity-related kidney disease also involves alterations in renal tubules, including tubule hypertrophy, lipid deposition and tubulointerstitial fibrosis. Although not completely understood, the harmful effects of obesity on the kidney may be mediated by different mechanisms, with alterations in adipose tissue probably playing an important role. An increase in visceral adipose tissue has classically been associated with the development of kidney damage, however, recent studies point to adipose tissue surrounding the kidney, and specifically to the fat within the renal sinus, as potentially involved in the development of ORG. In addition, new strategies for the treatment of patients with obesity-related kidney disease are focusing on the management of obesity. In this regard, some non-invasive options, such as glucagon-like peptide-1 (GLP-1) receptor agonists or sodium-glucose cotransporter-2 (SGLT2) inhibitors, are being considered for application in the clinic, not only for patients with diabetic kidney disease but as a novel pharmacological strategy for patients with ORG. In addition, bariatric surgery stands as one of the most effective options, not only for weight loss but also for the improvement of kidney outcomes in obese patients with chronic kidney disease.


Assuntos
Nefropatias Diabéticas , Obesidade , Nefropatias Diabéticas/etiologia , Peptídeo 1 Semelhante ao Glucagon/agonistas , Humanos , Hipertrofia/complicações , Lipídeos , Obesidade/complicações , Obesidade/terapia , Transportador 2 de Glucose-Sódio
11.
Food Funct ; 13(11): 5996-6007, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-35575219

RESUMO

Aim: To investigate the effects of egg white hydrolysate (EWH) on the lipid and glycemic metabolism disruption in the white adipose tissue (WAT) dysfunction induced by mercury (Hg). Experimental: Wistar rats were treated for 60 days: control (saline, intramuscular - i.m.); hydrolysate (EWH, gavage, 1 g kg-1 day-1); mercury (HgCl2, i.m., 1st dose 4.6 µg kg-1, subsequent doses 0.07 µg kg-1 day-1) and hydrolysate-mercury (EWH-HgCl2). Hg level and histological analyses were performed in epididymal WAT (eWAT), pancreas and liver. GRP78, CHOP, PPARα, PPARγ, leptin, adiponectin, and CD11 mRNA expressions were analyzed in eWAT. The plasma lipid profile, glucose, and insulin levels were measured. Antioxidant status was also evaluated in the plasma and liver. Results: EWH intake prevented the reduced eWAT weight, adipocyte size, insulin levels, and antioxidant defenses and the increased glucose and triglyceride levels induced by Hg exposure; hepatic glutathione levels were higher in rats co-treated with EWH. The increased mRNA expression of CHOP, PPARα, and leptin induced by Hg was reduced in co-treated rats. EWH did not modify the elevated mRNA expression of GRP78, PPARγ and adiponectin in Hg-treated rats. Increased levels of Hg were found in the liver; the co-treatment did not alter this parameter. EWH prevented the morphological and metabolic disorder induced by Hg, by improving antioxidant defenses, inactivating pro-apoptotic pathways and normalizing the mRNA expression of PPARs and adipokines. Its effects enabled an increase in insulin levels and a normal balance between the fat storage and expenditure mechanisms in WAT. Conclusions: EWH may have potential benefits in the prevention and management of Hg-related metabolic disorders.


Assuntos
Insulinas , Mercúrio , Adiponectina/genética , Adiponectina/metabolismo , Tecido Adiposo , Tecido Adiposo Branco/metabolismo , Animais , Antioxidantes/farmacologia , Clara de Ovo , Glucose/metabolismo , Insulinas/metabolismo , Insulinas/farmacologia , Leptina/metabolismo , Lipídeos/farmacologia , Mercúrio/metabolismo , Mercúrio/farmacologia , PPAR alfa/metabolismo , PPAR gama/genética , PPAR gama/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar
12.
Int J Mol Sci ; 23(9)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35563069

RESUMO

Uncoupling of metabolism and circadian activity is associated with an increased risk of a wide spectrum of pathologies. Recently, insulin and the closely related insulin-like growth factor I (IGF-I) were shown to entrain feeding patterns with circadian rhythms. Both hormones act centrally to modulate peripheral glucose metabolism; however, whereas central targets of insulin actions are intensely scrutinized, those mediating the actions of IGF-I remain less defined. We recently showed that IGF-I targets orexin neurons in the lateral hypothalamus, and now we evaluated whether IGF-I modulates orexin neurons to align circadian rhythms with metabolism. Mice with disrupted IGF-IR activity in orexin neurons (Firoc mice) showed sexually dimorphic alterations in daily glucose rhythms and feeding activity patterns which preceded the appearance of metabolic disturbances. Thus, Firoc males developed hyperglycemia and glucose intolerance, while females developed obesity. Since IGF-I directly modulates orexin levels and hepatic expression of KLF genes involved in circadian and metabolic entrainment in an orexin-dependent manner, it seems that IGF-I entrains metabolism and circadian rhythms by modulating the activity of orexin neurons.


Assuntos
Ritmo Circadiano , Hipotálamo , Fator de Crescimento Insulin-Like I , Animais , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Feminino , Hipotálamo/metabolismo , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Masculino , Camundongos , Neurônios/metabolismo , Orexinas/metabolismo
13.
Eur J Cell Biol ; 101(2): 151221, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35405464

RESUMO

Fibrosis is a physiological process of tissue repair that turns into pathological when becomes chronic, damaging the functional structure of the tissue. In this review we outline the current status of extracellular vesicles as modulators of the fibrotic process at different levels. In adipose tissue, extracellular vesicles mediate the intercellular communication not only between adipocytes, but also between adipocytes and other cells of the stromal vascular fraction. Thus, they could be altering essential processes for the functionality of adipose tissue, such as adipocyte hypertrophy/hyperplasia, tissue plasticity, adipogenesis and/or inflammation, and ultimately trigger fibrosis. This process is particularly important in obesity, and may eventually, influence the development of obesity-associated alterations. In this regard, obesity is now recognized as an independent risk factor for the development of chronic kidney disease, although the role of extracellular vesicles in this connection has not been explored so far. Nonetheless, the role of extracellular vesicles in the onset and progression of renal fibrosis has been highlighted due to the critical role of fibrosis as a common feature of kidney diseases. In fact, the content of extracellular vesicles disturbs cellular signaling cascades involved in fibrosis in virtually all types of renal cells. What is certain is that the study of extracellular vesicles is complex, as their isolation and manipulation is still difficult to reproduce, which complicates the overview of their physiopathological effects. Nevertheless, new strategies have been developed to exploit the potential of extracellular vesicles and their cargo, both as biomarkers and as therapeutic tools to prevent the progression of fibrosis towards an irreversible event.


Assuntos
Vesículas Extracelulares , Nefropatias , Adipócitos , Tecido Adiposo , Feminino , Fibrose , Humanos , Masculino , Obesidade
14.
Metabolites ; 11(12)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34940593

RESUMO

Severe obesity is a major risk for chronic kidney disease (CKD). Early detection and careful monitoring of renal function are critical for the prevention of CKD during obesity, since biopsies are not performed in patients with CKD and diagnosis is dependent on the assessment of clinical parameters. To explore whether distinct lipid and metabolic signatures in obesity may signify early stages of pathogenesis toward CKD, liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-high resolution accurate mass-mass spectrometry (GC-HRAM-MS) analyses were performed in the serum and the urine of severely obese patients with and without CKD. Moreover, the impact of bariatric surgery (BS) in lipid and metabolic signature was also studied, through LC-MS and GC-HRAM-MS analyses in the serum and urine of patients with severe obesity and CKD before and after undergoing BS. Regarding patients with severe obesity and CKD compared to severely obese patients without CKD, serum lipidome analysis revealed significant differences in lipid signature. Furthermore, serum metabolomics profile revealed significant changes in specific amino acids, with isoleucine and tyrosine, increased in CKD patients compared with patients without CKD. LC-MS and GC-HRAM-MS analysis in serum of patients with severe obesity and CKD after BS showed downregulation of levels of triglycerides (TGs) and diglycerides (DGs) as well as a decrease in branched-chain amino acid (BCAA), lysine, threonine, proline, and serine. In addition, BS removed most of the correlations in CKD patients against biochemical parameters related to kidney dysfunction. Concerning urine analysis, hippuric acid, valine and glutamine were significantly decreased in urine from CKD patients after surgery. Interestingly, bariatric surgery did not restore all the lipid species, some of them decreased, hence drawing attention to them as potential targets for early diagnosis or therapeutic intervention. Results obtained in this study would justify the use of comprehensive mass spectrometry-based lipidomics to measure other lipids aside from conventional lipid profiles and to validate possible early markers of risk of CKD in patients with severe obesity.

15.
Clin Kidney J ; 14(9): 2037-2046, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34476090

RESUMO

BACKGROUND: Bariatric surgery (BS) has been postulated as the most effective measure for weight reduction. Weight loss improves metabolic parameters and exerts changes in renal function that lead to the amelioration of absolute or relative glomerular hyperfiltration, a condition that may be renoprotective in the long term. However, few studies have demonstrated the influence of BS in patients with severe obesity and chronic kidney disease (CKD). Our objective was to analyse the evolution of renal function, adipose tissue-derived molecules and inflammatory parameters in patients with CKD after BS. METHODS: This is an observational and prospective study. Thirty patients were screened and 12 were included between January 2016 and January 2018 with a 24-month follow-up. Glomerular filtration rate (GFR) was determined by plasma iohexol clearance. Adipokines, cytokines, circulating hormones and fibrotic parameters were evaluated before and 12 months after BS using the Bioplex system. RESULTS: The mean age was 50.6 years and 58.3% were males. Seven patients had a body mass index >40 kg/m2 and 66.7% were diabetic. Twenty-four months following BS there was a significant decrease in body weight (36.4%). Proteinuria decreased by 63.7 ± 28.2%. Measured GFR significantly diminished from before surgery to Month 24 after surgery (94 ± 44 to 79 ± 44 mL/min, P = 0.03). There was a significant decrease in adipocyte-derived molecules (leptin and vifastin) as well as in pro-inflammatory cytokines [interleukin (IL)-1ß, tumour necrosis factor α, IL-6 and monocyte chemoattractant protein-1] and other circulating factors (vascular endothelial growth factor and transforming growth factor ß isoforms). CONCLUSIONS: BS is an effective option to prevent kidney damage in obese subjects with CKD due to the improvement of glomerular hyperfiltration, adipocyte cytokines metabolic and inflammatory parameters.

16.
Int J Mol Sci ; 22(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34502170

RESUMO

(1) Background: Pleiotrophin preserves insulin sensitivity, regulates adipose tissue lipid turnover and plasticity, energy metabolism and thermogenesis. The aim of this study was to determine the role of pleiotrophin in hepatic lipid metabolism and in the metabolic crosstalk between the liver and brown and white adipose tissue (AT) in a high-fat diet-induced (HFD) obesity mice model. (2) Methods: We analyzed circulating variables, lipid metabolism (hepatic lipid content and mRNA expression), brown AT thermogenesis (UCP-1 expression) and periovarian AT browning (brown adipocyte markers mRNA and immunodetection) in Ptn-/- mice either fed with standard-chow diet or with HFD and in their corresponding Ptn+/+ counterparts. (3) Results: HFD-Ptn-/- mice are protected against the development of HFD-induced insulin resistance, had lower liver lipid content and lower expression of the key enzymes involved in triacylglycerides and fatty acid synthesis in liver. HFD-Ptn-/- mice showed higher UCP-1 expression in brown AT. Moreover, Ptn deletion increased the expression of specific markers of brown/beige adipocytes and was associated with the immunodetection of UCP-1 enriched multilocular adipocytes in periovarian AT. (4) Conclusions: Ptn deletion protects against the development of HFD-induced insulin resistance and liver steatosis, by increasing UCP-1 expression in brown AT and promoting periovarian AT browning.


Assuntos
Tecido Adiposo Marrom/metabolismo , Citocinas/deficiência , Dieta Hiperlipídica/efeitos adversos , Suscetibilidade a Doenças , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Biomarcadores , Proteínas de Transporte , Modelos Animais de Doenças , Metabolismo Energético , Fígado Gorduroso/patologia , Expressão Gênica , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Knockout , Tamanho do Órgão , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
17.
FASEB J ; 35(10): e21911, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34551152

RESUMO

Pleiotrophin is a pleiotropic cytokine that has been demonstrated to have a critical role in regulating energy metabolism, lipid turnover and plasticity of adipose tissue. Here, we hypothesize that this cytokine can be involved in regulatory processes of glucose and lipid homeostasis in the liver during pregnancy. Using 18-days pregnant Ptn-deficient mice, we evaluated the biochemical profile (circulating variables), tissue mRNA expression (qPCR) and protein levels of key enzymes and transcription factors involved in main metabolic pathways. Ptn deletion was associated with a reduction in body weight gain, hyperglycemia and glucose intolerance. Moreover, we observed an impairment in glucose synthesis and degradation during late pregnancy in Ptn-/- mice. Hepatic lipid content was significantly lower (73.6%) in Ptn-/- mice and was associated with a clear reduction in fatty acid, triacylglycerides and cholesterol synthesis. Ptn deletion was accompanying with a diabetogenic state in the mother and a decreased expression of key proteins involved in glucose and lipid uptake and metabolism. Moreover, Ptn-/- pregnant mice have a decreased expression of transcription factors, such as PPAR-α, regulating lipid uptake and glucose and lipid utilization. Furthermore, the augmented expression and nuclear translocation of glycerol kinase, and the decrease in NUR77 protein levels in the knock-out animals can further explain the alterations observed in hepatic glucose metabolism. Our results point out for the first time that pleiotrophin is an important player in maintaining hepatic metabolic homeostasis during late gestation, and further highlighted the moonlighting role of glycerol kinase in the regulation of maternal glucose homeostasis during pregnancy.


Assuntos
Proteínas de Transporte/genética , Citocinas/deficiência , Citocinas/genética , Deleção de Genes , Intolerância à Glucose/genética , Glicerol Quinase/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Animais , Colesterol/metabolismo , Ácidos Graxos/metabolismo , Feminino , Glucose/biossíntese , Glucose/metabolismo , Lipoproteínas/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Gravidez , Fatores de Transcrição/metabolismo , Triglicerídeos/metabolismo , Aumento de Peso/genética
18.
Dis Model Mech ; 14(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34431499

RESUMO

Glomerulosclerosis and tubulointerstitial fibrosis are pathological features of chronic kidney disease. Transforming growth factor ß (TGFß) is a key player in the development of fibrosis. However, of the three known TGFß isoforms, only TGFß1 has an established role in fibrosis, and the pathophysiological relevance of TGFß2 and TGFß3 is unknown. Because Tgfb3 deficiency in mice results in early postnatal lethality, we analyzed the kidney phenotype of heterozygous Tgfb3-knockout mice (Tgfb3+/-) and compared it with that of matched wild-type mice. Four-month-old Tgfb3+/- mice exhibited incipient renal fibrosis with epithelial-mesenchymal transition, in addition to glomerular basement membrane thickening and podocyte foot process effacement associated with albuminuria. Also evident was insulin resistance and oxidative stress at the renal level, together with aberrant renal lipid metabolism and mitochondrial function. Omics analysis revealed toxic species, such as diacylglycerides and ceramides, and dysregulated mitochondrial metabolism in Tgfb3+/- mice. Kidneys of Tgfb3+/- mice showed morphological alterations of mitochondria and overactivation of non-canonical MAPK ERK1/2 and JNK cascades. Our study indicates that renal TGFß3 might have antifibrotic and renoprotective properties, opposing or counteracting the activity of TGFß1. This article has an associated First Person interview with the first author of the paper.


Assuntos
Metabolismo dos Lipídeos , Fator de Crescimento Transformador beta3/metabolismo , Animais , Fibrose , Rim/metabolismo , Camundongos , Camundongos Knockout , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
19.
Eur J Clin Nutr ; 75(12): 1723-1734, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33911209

RESUMO

Pregnancy is a physiological stress that requires dynamic, regulated changes affecting maternal and fetal adiposity. Excessive accumulation of dysfunctional adipose tissue defined by metabolic and molecular alterations cause severe health consequences for mother and fetus. When subjected to sustained overnutrition, the cellular and lipid composition of the adipose tissue changes predisposing to insulin resistance, diabetes, and other metabolic disorders compromising the outcome of the pregnancy. Moreover, excessive maternal weight gain, usually in the context of obesity, predisposes to an increased flux of nutrients from mother to fetus throughout the placenta. The fetus of an obese mother will accumulate more adiposity and may increase the risk of future metabolic disorder later in life. Thus, further understanding of the interaction between maternal metabolism, epigenetic regulation of the adipose tissue, and their transgenerational transfer are required to mitigate the adverse health outcomes for the mother and the fetus associated with maternal obesity.


Assuntos
Resistência à Insulina , Hipernutrição , Complicações na Gravidez , Epigênese Genética , Feminino , Humanos , Obesidade , Placenta/metabolismo , Gravidez
20.
Sci Rep ; 11(1): 7717, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33833312

RESUMO

When exposed to nutrient excess and insulin resistance, pancreatic ß-cells undergo adaptive changes in order to maintain glucose homeostasis. The role that growth control genes, highly expressed in early pancreas development, might exert in programming ß-cell plasticity in later life is a poorly studied area. The imprinted Igf2 (insulin-like growth factor 2) gene is highly transcribed during early life and has been identified in recent genome-wide association studies as a type 2 diabetes susceptibility gene in humans. Hence, here we investigate the long-term phenotypic metabolic consequences of conditional Igf2 deletion in pancreatic ß-cells (Igf2ßKO) in mice. We show that autocrine actions of IGF2 are not critical for ß-cell development, or for the early post-natal wave of ß-cell remodelling. Additionally, adult Igf2ßKO mice maintain glucose homeostasis when fed a chow diet. However, pregnant Igf2ßKO females become hyperglycemic and hyperinsulinemic, and their conceptuses exhibit hyperinsulinemia and placentomegalia. Insulin resistance induced by congenital leptin deficiency also renders Igf2ßKO females more hyperglycaemic compared to leptin-deficient controls. Upon high-fat diet feeding, Igf2ßKO females are less susceptible to develop insulin resistance. Based on these findings, we conclude that in female mice, autocrine actions of ß-cell IGF2 during early development determine their adaptive capacity in adult life.


Assuntos
Plasticidade Celular/fisiologia , Fator de Crescimento Insulin-Like II/fisiologia , Células Secretoras de Insulina/citologia , Animais , Feminino , Glucose/metabolismo , Homeostase , Insulina/sangue , Resistência à Insulina , Células Secretoras de Insulina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...